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Part I: Additional exercises

1. Suppose xn ≥ 0,∀n ∈ N and lim
n→∞

(−1)nxn exists. Show that (xn) is convergent.

Proof: If lim
n→∞

(−1)nxn := x > 0, then from Ex 3.1.10 we know there exists a natural

number M such that (−1)nxn > 0 for all n ≥ M . However, for 2M + 1 ≥ M , we have
(−1)2M+1x2M+1 = −x2M+1 ≤ 0, contradiction! Similarly we also have that x cannot be less
than 0.

Therefore, x = lim
n→∞

(−1)nxn = 0. By Theorem 3.2.9 we know

lim
n→∞

xn = lim
n→∞

|(−1)nxn| = 0.

2. Let A ⊂ R be nonempty and bounded from above. By the Completeness Property, s := supA
exists in R.

(a) Show that there exists a sequence (an) ⊂ A such that lim
n→∞

an = s.

(b) Show that, in addition, the above convergent sequence can be chosen to be monotonically
increasing (not necessarily strictly increasing).

(c) Show that if we assume s /∈ A in addition, then the above convergent sequence can be
taken to be strictly increasing. Also, given an example to illustrate that without this
additional assumption, such strictly increasing sequence may not exist.

Proof:

(a) s = supA ⇒ ∀n ∈ N,∃an ∈ A such that s − 1

n
< an ≤ s. Therefore, |an − s| ≤ 1

n
,∀n

and thus (an) is a sequence in A with

lim
n→∞

an = s

(b) There exists a1 ∈ A such that s − 1 < a1 ≤ s. For this a1, there exists a2 ∈ A
such that s − min(1

2
, s − a1)≤a2 ≤ s. For this a2, there exists a3 ∈ A such that

s−min(1
3
, s− a2)≤a3 ≤ s. Continue in this way we obtain a sequence (an) ⊂ A which

is increasing and converges to s.

Think about why we use ≤ here instead of <.

(c) If s /∈ A, we have a1 6= s. Take ε1 = s− a1 > 0, there exists a2 ∈ A such that

s−min

(
1

2
, ε1

)
< a2 ⇒ a1<a2.
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For this a2 < s, we can similarly let ε2 = s−a2 and pick a3 > s−min

(
1

3
, ε2

)
. Continue

and we can get a strictly increasing sequence that converges to s.

If we do not make this additional assumption that s /∈ A, then such strictly increasing
sequence may not exist. For example, let A = {s} be a set containing only one real
number, then A is nonempty and bounded from above with supA = s. There exists an
increasing sequence (an) = (s, s, s, · · · ) ⊂ A which converges to s. But we cannot find
such a sequence which is strictly increasing.

3. (A generalization of Ex 3.2.15). Suppose a1, a2, · · · , ak are k given positive real numbers.
Show that

lim
n→∞

(
an1 + an2 + · · ·+ ank

k

) 1
n

= max(a1, a2, · · · , ak).

(Hint: apply Squeeze Theorem)

Proof: Denote max(a1, a2, · · · , ak) by M (> 0). Then

Mn

k
≤ an1 + an2 + · · ·+ ank

k
≤ Mn + Mn + · · ·+ Mn

k
= Mn.

Because
lim
n→∞

(Mn)
1
n = lim

n→∞
M = M

and

lim
n→∞

(
Mn

k

) 1
n

= lim
n→∞

M

k
1
n

=
M

lim
n→∞

k
1
n

=
M

1
= M,

we can conclude from Squeeze Theorem that

lim
n→∞

(
an1 + an2 + · · ·+ ank

k

) 1
n

= M = max(a1, a2, · · · , ak).

4. Suppose (xn) converges to x ∈ R and xn 6= 0,∀n. Does lim
n→∞

xn+1

xn

exist or not?

Solution: Case 1. If x 6= 0, then

lim
n→∞

xn+1

xn

=
lim
n→∞

xn+1

lim
n→∞

xn

=
x

x
= 1.

Case 2. If x = 0, there are more than one possibilities.

(a) Consider (xn) =

(
1, 1,

1

2
,
1

2
,

1

22
,

1

22
,

1

23
,

1

23
, · · ·

)
, then lim

n→∞
xn = x = 0 while lim

n→∞

xn+1

xn

does not exist.

(b) You can try to construct examples showing that if lim
n→∞

xn+1

xn

exists, then the limit can

be any number in [−1, 1].

Part II: Some comments
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1. The Monotone Convergence Theorem is a very important and powerful result. It implies the
existence of the limit of a bounded monotone sequence.

Notice that in our definition of increasing sequence, we require that xn+1 ≥ xn,∀n ∈ N
where equality is allowed to hold. So that a sequence can be increasing and decreasing
simultaneously, i.e., when all the terms are equal. And a sequence is said to be strictly
increasing (decreasing) if an+1 > an (an+1 < an), ∀n ∈ N.

2. Monotone Convergence Theorem also gives a way to compute the limit of a monotone
bounded sequence by finding the supremum or infimum. However, in most cases it is not easy
to evaluate this supremum (infimum) directly and we need to use other methods instead.

In many cases, a sequence (xn) is defined inductively, given by a recursive equation:

xn+1 = f(xn)

where f(x) is a known function and the first term x1 is also known.

When applying MCT to theses problems, our argument usually consists of three steps (some-
times the first two steps can be combined).

Step 1: Prove that (xn) is bounded.

Step 2: Prove that (xn) is monotone.

Step 3: Use MCT to claim that lim
n→∞

xn exists. Once we know the sequence converges, we

can use the induction equation to calculate the limit of this sequence: let n → ∞ and we
obtain an equation of the limit x: (you may accept the last equality below for now, which is
an important topic called ”continuity” that we will study in later lectures)

x = lim
n→∞

xn+1 = lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)
= f(x).

Solve this equation and then lim
n→∞

xn = x is known.

Notice that sometimes the equation x = f(x) can have more than one roots. Since the
limit of a convergence sequence is unique, we need to exclude the unwanted roots. Refer to
Example 3.3.4(b).

Remark: The function f(x) provides almost all the information that we need to prove
the monotonicity and boundedness of (xn). A frequently used method is Mathematical
Induction in steps 1 and 2.

Part III: other problems.

1. Use Squeeze Theorem to prove that

lim
n→∞

1 + 2
1
n + · · ·+ n

1
n

n
= 1.

Proof: ∀1 ≤ i ≤ n we have
1 ≤ i

1
n ≤ n

1
n .
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Therefore,

1 =
1 + 1 + · · ·+ 1

n
≤ 1 + 2

1
n + · · ·+ n

1
n

n
≤ n

1
n + n

1
n + · · ·+ n

1
n

n
= n

1
n .

It’s a known result that lim
n→∞

n
1
n = 1 and thus by Squeeze Theorem we have

lim
n→∞

1 + 2
1
n + · · ·+ n

1
n

n
= 1.

2. Let (xn) be a sequence of real numbers defined by

xn = 1 +
1

22
+ · · ·+ 1

n2
,∀n ∈ N.

Show that (xn) is convergent.

Proof: ∀n, xn+1 = xn +
1

(n + 1)2
≥ xn =⇒ (xn) is increasing.

Moreover,

xn ≤ 1 +
1

1 · 2
+ · · ·+ 1

(n− 1)n
= 1 +

(
1− 1

2

)
+ · · ·+

(
1

n− 1
− 1

n

)
= 2− 1

n
< 2.

Therefore, (xn) is bounded from above and hence also convergent.

3. (Ex 3.3.2) Let x1 > 1 and xn+1 = 2 − 1

xn

,∀n ∈ N. Show that (xn) is convergent and find

its limit.

Solution: Here f(x) = 2− 1

x
.

Step 1. By mathematical induction we have that xn > 1 (supplement the details yourself)
and hence (xn) is bounded from below.

Step 2. Take difference and then

xn+1 − xn = 2− 1

xn

− xn =
−x2

n + 2xn − 1

xn

= −(xn + 1)2

xn

Since we already have xn > 1, it follows that xn+1 < xn for all n and thus (xn) is decreasing.

Step 3. By MCT we know (xn) is convergent. Let n→∞ and we have

x = f(x) = 2− 1

x
=⇒ x = 1.

Remark: If interested, you may think what will happen if 0 < x1 < 1.

4. (Question 2(b) on Feb 7 continued). If we in addition assume that (xn) is increasing,
then the converse is true, i.e., if lim

n→∞
An = x ∈ R, then (xn) is convergent and

lim
n→∞

xn = x.
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Solution: By assumption we have xn ≤ xn+1,∀n and then

An =
x1 + x2 + · · ·+ xn

n
≤ xn + xn + · · ·+ xn

n
= xn. (∗)

Now fix n and let m > n. Then

Am =
1

m
(x1 + x2 + · · ·+ xn + xn+1 + · · ·+ xm)

≥ x1 + x2 + · · ·+ xn

m
+

m− n

m
xn.

Let m→∞ and we have
x = lim

m→∞
Am ≥ 0 + 1 · xn = xn.

Combine with (∗) and hence
An ≤ xn ≤ x.

Since lim
n→∞

An = x, by Squeeze Theorem we conclude that

lim
n→∞

xn = x.

5. Suppose x1, x2 ∈ R and
xn+2 = pxn+1 + (1− p)xn, ∀n ∈ N

where p ∈ (0, 1) is a constant. Show that (xn) is convergent and calculate its limit.

Solution: xn+2 − xn+1 = (p− 1)(xn+1 − xn) = · · · = (p− 1)n(x2 − x1) and thus

xn − x1 = (xn − xn−1) + (xn−1 − xn−2) + · · ·+ (x2 − x1)

= (p− 1)n−2(x2 − x1) + (p− 1)n−3(x2 − x1) + · · ·+ (x2 − x1)

=
1− (p− 1)n−1

1− (p− 1)
(x2 − x1).

Therefore,

xn = x1 +
1− (p− 1)n−1

2− p
(x2 − x1).

Since 0 < p < 1, we have |p− 1| < 1 and then

lim
n→∞

xn = x1 +
1

2− p
(x2 − x1) =

(1− p)x1 + x2

2− p
.

6. Assignment 5 Supplementary Exercise 2: By Binomial Theorem,

en =

(
1 +

1

n

)n

= 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·+ 1

n!

(
1− 1

n

)(
1− 2

n

)
· · ·

(
1− n− 1

n

)
.

Fix k ∈ N and let n > k, then

en > 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
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+ · · ·+ 1

k!

(
1− 1

n

)(
1− 2

n

)
· · ·

(
1− k − 1

n

)
.

Taking limits on both sides of above inequality as n→∞, we get

e ≥ 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

k!
= xk, ∀k ∈ N.

On the other hand, it is easy to check that

en ≤ 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

n!
= xn, ∀n.

Therefore, en ≤ xn ≤ e, ∀n ∈ N and by Squeeze Theorem we conclude that

lim
n→∞

xn = e. (∗∗)

Remark: Some authors use (∗∗) as the definition of e.


